from pathlib import Path
import xarray as xra
datafile_path = Path('/home/jovyan/shared/QGreenland/QGreenland_v2.0.0/Biology/Vegetation/Vegetation biomass 2010 (12.4km)/vegetation_biomass_2010.tif')
ds = xra.open_dataset(datafile_path)
ds
<xarray.Dataset> Dimensions: (band: 1, x: 180, y: 265) Coordinates: * band (band) int64 1 * x (x) float64 -9.918e+05 -9.794e+05 ... 1.215e+06 1.228e+06 * y (y) float64 -3.358e+05 -3.482e+05 ... -3.597e+06 -3.609e+06 spatial_ref int64 ... Data variables: band_data (band, y, x) float32 ...
xarray.Dataset
- band: 1
- x: 180
- y: 265
- band(band)int641
array([1])
- x(x)float64-9.918e+05 -9.794e+05 ... 1.228e+06
array([-9.918120e+05, -9.794120e+05, -9.670120e+05, -9.546120e+05, -9.422120e+05, -9.298120e+05, -9.174120e+05, -9.050120e+05, -8.926120e+05, -8.802120e+05, -8.678120e+05, -8.554120e+05, -8.430120e+05, -8.306120e+05, -8.182120e+05, -8.058120e+05, -7.934120e+05, -7.810120e+05, -7.686120e+05, -7.562120e+05, -7.438120e+05, -7.314120e+05, -7.190120e+05, -7.066120e+05, -6.942120e+05, -6.818120e+05, -6.694120e+05, -6.570120e+05, -6.446120e+05, -6.322120e+05, -6.198120e+05, -6.074120e+05, -5.950120e+05, -5.826120e+05, -5.702120e+05, -5.578120e+05, -5.454120e+05, -5.330120e+05, -5.206120e+05, -5.082120e+05, -4.958120e+05, -4.834120e+05, -4.710120e+05, -4.586120e+05, -4.462120e+05, -4.338120e+05, -4.214120e+05, -4.090120e+05, -3.966120e+05, -3.842120e+05, -3.718120e+05, -3.594120e+05, -3.470120e+05, -3.346120e+05, -3.222120e+05, -3.098120e+05, -2.974120e+05, -2.850120e+05, -2.726120e+05, -2.602120e+05, -2.478120e+05, -2.354120e+05, -2.230120e+05, -2.106120e+05, -1.982120e+05, -1.858120e+05, -1.734120e+05, -1.610120e+05, -1.486120e+05, -1.362120e+05, -1.238120e+05, -1.114120e+05, -9.901200e+04, -8.661200e+04, -7.421200e+04, -6.181200e+04, -4.941200e+04, -3.701200e+04, -2.461200e+04, -1.221200e+04, 1.880000e+02, 1.258800e+04, 2.498800e+04, 3.738800e+04, 4.978800e+04, 6.218800e+04, 7.458800e+04, 8.698800e+04, 9.938800e+04, 1.117880e+05, 1.241880e+05, 1.365880e+05, 1.489880e+05, 1.613880e+05, 1.737880e+05, 1.861880e+05, 1.985880e+05, 2.109880e+05, 2.233880e+05, 2.357880e+05, 2.481880e+05, 2.605880e+05, 2.729880e+05, 2.853880e+05, 2.977880e+05, 3.101880e+05, 3.225880e+05, 3.349880e+05, 3.473880e+05, 3.597880e+05, 3.721880e+05, 3.845880e+05, 3.969880e+05, 4.093880e+05, 4.217880e+05, 4.341880e+05, 4.465880e+05, 4.589880e+05, 4.713880e+05, 4.837880e+05, 4.961880e+05, 5.085880e+05, 5.209880e+05, 5.333880e+05, 5.457880e+05, 5.581880e+05, 5.705880e+05, 5.829880e+05, 5.953880e+05, 6.077880e+05, 6.201880e+05, 6.325880e+05, 6.449880e+05, 6.573880e+05, 6.697880e+05, 6.821880e+05, 6.945880e+05, 7.069880e+05, 7.193880e+05, 7.317880e+05, 7.441880e+05, 7.565880e+05, 7.689880e+05, 7.813880e+05, 7.937880e+05, 8.061880e+05, 8.185880e+05, 8.309880e+05, 8.433880e+05, 8.557880e+05, 8.681880e+05, 8.805880e+05, 8.929880e+05, 9.053880e+05, 9.177880e+05, 9.301880e+05, 9.425880e+05, 9.549880e+05, 9.673880e+05, 9.797880e+05, 9.921880e+05, 1.004588e+06, 1.016988e+06, 1.029388e+06, 1.041788e+06, 1.054188e+06, 1.066588e+06, 1.078988e+06, 1.091388e+06, 1.103788e+06, 1.116188e+06, 1.128588e+06, 1.140988e+06, 1.153388e+06, 1.165788e+06, 1.178188e+06, 1.190588e+06, 1.202988e+06, 1.215388e+06, 1.227788e+06])
- y(y)float64-3.358e+05 ... -3.609e+06
array([ -335824., -348224., -360624., ..., -3584624., -3597024., -3609424.])
- spatial_ref()int64...
- crs_wkt :
- PROJCS["WGS 84 / NSIDC Sea Ice Polar Stereographic North",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Polar_Stereographic"],PARAMETER["latitude_of_origin",70],PARAMETER["central_meridian",-45],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",SOUTH],AXIS["Northing",SOUTH],AUTHORITY["EPSG","3413"]]
- semi_major_axis :
- 6378137.0
- semi_minor_axis :
- 6356752.314245179
- inverse_flattening :
- 298.257223563
- reference_ellipsoid_name :
- WGS 84
- longitude_of_prime_meridian :
- 0.0
- prime_meridian_name :
- Greenwich
- geographic_crs_name :
- WGS 84
- horizontal_datum_name :
- World Geodetic System 1984
- projected_crs_name :
- WGS 84 / NSIDC Sea Ice Polar Stereographic North
- grid_mapping_name :
- polar_stereographic
- standard_parallel :
- 70.0
- straight_vertical_longitude_from_pole :
- -45.0
- false_easting :
- 0.0
- false_northing :
- 0.0
- spatial_ref :
- PROJCS["WGS 84 / NSIDC Sea Ice Polar Stereographic North",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Polar_Stereographic"],PARAMETER["latitude_of_origin",70],PARAMETER["central_meridian",-45],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",SOUTH],AXIS["Northing",SOUTH],AUTHORITY["EPSG","3413"]]
- GeoTransform :
- -998012.0000002026 12400.0 0.0 -329624.00000000006 0.0 -12400.0
[1 values with dtype=int64]
- band_data(band, y, x)float32...
- AREA_OR_POINT :
- Area
- STATISTICS_MAXIMUM :
- 0.92207217216492
- STATISTICS_MEAN :
- 0.10184434541523
- STATISTICS_MINIMUM :
- 0.082999996840954
- STATISTICS_STDDEV :
- 0.06295259289208
- STATISTICS_VALID_PERCENT :
- 34.97
[47700 values with dtype=float32]
- bandPandasIndex
PandasIndex(Int64Index([1], dtype='int64', name='band'))
- xPandasIndex
PandasIndex(Float64Index([-991812.0000002026, -979412.0000002026, -967012.0000002026, -954612.0000002026, -942212.0000002026, -929812.0000002026, -917412.0000002026, -905012.0000002026, -892612.0000002026, -880212.0000002026, ... 1116187.9999997974, 1128587.9999997974, 1140987.9999997974, 1153387.9999997974, 1165787.9999997974, 1178187.9999997974, 1190587.9999997974, 1202987.9999997974, 1215387.9999997974, 1227787.9999997974], dtype='float64', name='x', length=180))
- yPandasIndex
PandasIndex(Float64Index([-335824.00000000006, -348224.00000000006, -360624.00000000006, -373024.00000000006, -385424.00000000006, -397824.00000000006, -410224.00000000006, -422624.00000000006, -435024.00000000006, -447424.00000000006, ... -3497824.0, -3510224.0, -3522624.0, -3535024.0, -3547424.0, -3559824.0, -3572224.0, -3584624.0, -3597024.0, -3609424.0], dtype='float64', name='y', length=265))